

Electric Propulsion Technology for Active Spacecraft Potential Control

EPIC Workshop 9-12 May, 2023 Naples, Italy

Johanna Fries, Bernhard Seifert FOTEC Forschungs- und Technologietransfer GmbH, Austria

Fabrice Cipriani ESA/ESTEC - European Space Agency, The Netherlands

fries@fotec.at

Agenda

Project team:

Johanna Fries, Nina S. Mühlich, Joachim Gerger, Florin Plesescu, Bernhard Seifert Department of Aerospace Engineering, Electric Propulsion, FOTEC Forschungs- und Technologietransfer GmbH, Austria

Harald Jeszenszky, Gerhard Fremuth, Manfred Steller, Rumi Nakamura

Space Research Institute, Austrian Academy of Sciences, Austria

Fabrice Cipriani (ESA Technical Officer)

Space Environment and Effects Section, ESA/ESTEC - European Space Agency, The Netherlands

der FH Wiene

EP Technology for Active Spacecraft Potential Control

Motivation

Motivation

Technology Details

Instrument based on

- Previous mission experience
- FOTEC's proprietary FEEP technology (i.e. IFM NANO Thruster)

6

EP Technology for Active Spacecraft Potential Control

Technology Details

ASPOC Next Generation Emitter Module: Design challenges

- Potential control device with reduced mass and power consumption
 - Change from pure indium \rightarrow alternative propellant
- Increased mass efficiency and controllability Change from capillary → porous needle emitter

ASPOC Next Generation Electronics Control Unit: Design Challenges

Electronics for high reliability (ESA / NASA missions)

- High susceptibility to radiation
- Low failure rates (MTTF and MTBF)
- Miniaturization limited

Test Results

	lon emitter	Liquid e ⁻ emitter	Solid e⁻ emitter
Needles	4	28	28
Propellant	Alternative	Alternative	-
Emission current	≤ 50 μA	≤ 100 μA	≤ 100 µA
Efficiency	≥ 95 %	7 – 96 %	≥ 96 %
Accuracy	± 0.06 µA	± 2.99 μΑ	± 0.05 μΑ
Emission	stable	pulsed	stable

-der FH Wiener Neustadt

EP Technology for Active Spacecraft Potential Control

10

Key Features

Successfully developed and tested ASPOC-NG

instrument based on elective propulsion technology

- lon emission
- Solid electron emission without propellant

Current: ~100 µA Accuracy: < 0.1 µA Particle energy: < 6 keV Mass: ~1.2 kg Power: ~2.2 W

Follow-up Development

- ✓ Vastly growing market of small satellites (1-500 kg)
- ✓ ASPOC necessary for specific missions to ensure proper potential neutralization of spacecraft
- Ensure precise measurements using plasma diagnostics, magnetometers etc.
- ✓ Reliable and accurate atmospheric measurements

Potential missions

- ✓ Earth observation
- ✓ Plasma Observatory Mission (near-earth space)
- ✓ Science missions

Satellite PEGASUS with plasma probes

Forschungsunternehme -der FH Wiener Neustad

EP Technology for Active Spacecraft Potential Control

Roadmap

- Reduce the volume and weight
- Optimise efficiency of electronics
- Increase reliability of firmware

- Ion & electron beam characteristics
- Lifetime test (2 month), on-off cycles

QM

QR

- Performance characterisation
- EMC Test
- On-board software test

TRL 7

Conclusion and outlook

- Upgrade of ASPOC-NG electronics
- Environmental test campaigns
- Development of ASPOCube for small satellites

Thank you for your attention

Contact:

Johanna Fries fries@fotec.at www.fotec.at Follow us on LinkedIn

Acknowledgments:

Special thanks to **ESA** and **FFG** for supporting the activities.