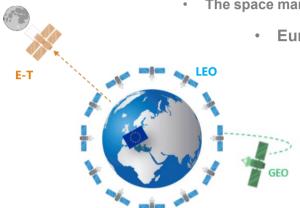
Consortium for Hall Effect Orbital Propulsion System

EPIC WORKSHOP


Naples - May, 10th 2023

Project Coordinator: Vanessa Vial

European Spirit

- The space market is booming
 - Europe aims at ensuring its role of major player on all markets
 - On going development programs contribute to European leadership
 - Non-dependence is crucial to secure this ambition

Europe offer all R&D skills and industrial know-how to develop pilar technologies of future space applications

Through the CHEOPS Projects, Safran and its partners aim at maturing Electric Propulsion Systems based on Hall thruster technology to offer competitive and reliable European solutions for the future space market

European strategy for maturation of promising Hall technologies consistent with the three market segment needs to ensure European leadership and sovereignty

CHEOPS Consortia

4 Projects

1 EC expert and 5 PSA members

16 Partners in 8 Countries

- 6 Industrials
 - → System & Thruster/PPU/FMS
 - → Advisory Board for consistency with market needs
- 4 SMEs
 - → Testing activities, Dissemination, Communication
- 6 Universities / Research centers
 - **→** Numerical tools, plasma physics, Value analysis

EPIC WS23: 7 presentations / 1 poster / 2 round tables

Market Drivers

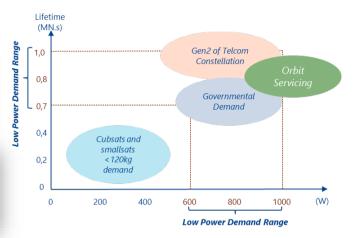
On Orbit Services is a key development driver with dozen of projects with multiple applications (Tug – Services)

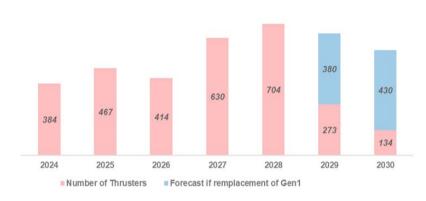
New Players are competing with established companies

17,000 satellites to be built and launched over the coming years (7,000 satellites for broadband sitcom)

Gen 2 of constellations has bigger weight

European electric propulsion systems shall have a key strategic position in all market segments




Low Power Market Needs

- > The actual market has a 2 power range class with <400W and 650W / 1kW
- 2 different approaches with cubesats demand and « heavy » platform demand > 400kg
- With the a low mass and size + and agressive price, the CHEOPS Low Power System can be an alternative on the 1.2 3 kW market by proposing a cluster of such propulsive system

CHEOPS Low Power System is the good answer regarding the market need and the continuous development of constellations projects

Medium Power market context

The Established approach...

Commercial demand model in number of satellites by orbit								
Contract Notification	2028	2029	2030	2031	2032	2032	2034	2034+
GEO/MEO	15	16	15	16	16	15	15	16
Medium P.	16	32	40	50	50	50	50	50

- ✓ GEO satellites Market will stay stable but will turn 100% electric and more efficiency will be asked from the prime (less redundancy)
- ✓ MEO/MicroGeo will emerge with a need of 3kW class System

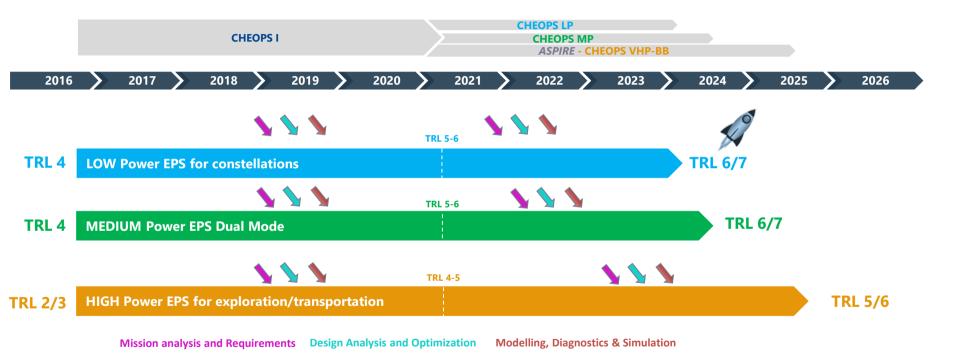
Ö

The Raise of the On orbit Services...

Com	Commercial demand model in number of satellites by orbit							
Contract Notification	2028	2029	2030	2031	2032	2032	2034	2034+
Medium P.	56	136	216	216	216	216	216	216

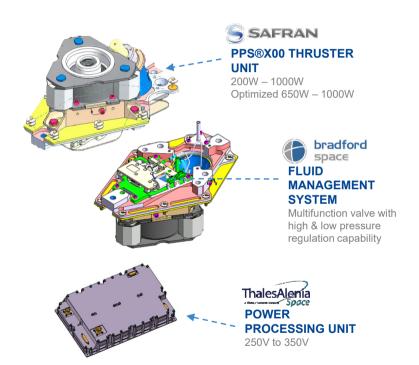
Acceleration of the need to have a space industry 100% made in Europe

A significant share of the 5kW-class EPS market has been lost by Russia


New competitors with alternative solution will emerge...

... but the CHEOPS MP EPS is a tailored and reliable product for this segment

On Orbit Services will be the Key driver for the Medium Power initiative...
... but need of the Western countries to find a Western supplier


CHEOPS Timeline

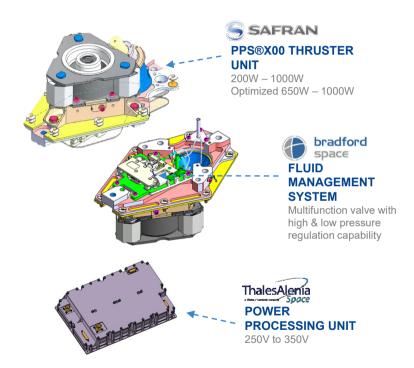
CHEOPS Low Power EPS Overview

Subkilowatt class propulsive system

Development driven by **Small and large constellations** market needs

⇒ More competitiveness, larger production capabilities,
 versatility, compacity, ready-to-use, short time-to-market
 ⇒ Technical, economic, industrial challenges

Optimized design, functions, operating range **New technologies**


Specification, design and development logic recently adapted to the current situation (power budget & krypton)

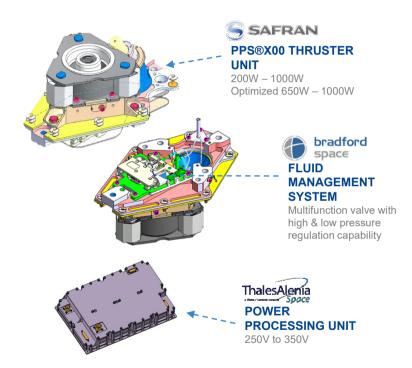
Multiple characterization and validation tests

CHEOPS Low Power EPS KPI

0,7 (1) MN.s

2024

Flight worthiness for IOD/V 2025: 1st deliveries for commercial applications

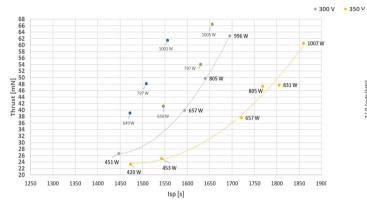

Kr-Xe

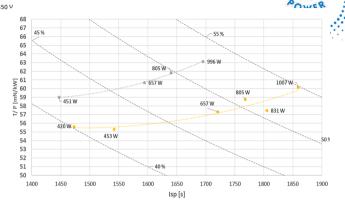
Xenon and Krypton compatible

CHEOPS Low Power EPS development status and next steps

March-April 2023: TU-FMS coupling test successful

Q2 2023: EPS components functional design review +recommendations for TU-FMS-PPU coupling test planned October 2023

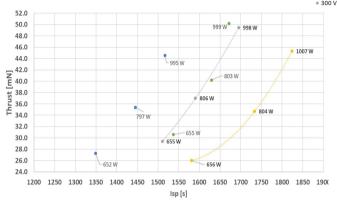

2024 Qualification Status Review = 1st step for qualification phase, ie maturity assessment for IOD/IOV based on « Flight worthiness » justification file and lessons learned

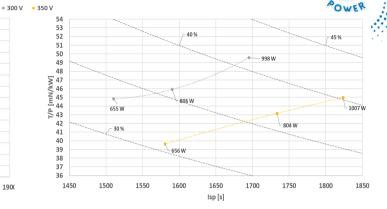


CHEOPS Low Power Thruster Unit achievements (Xe)

[650; 1000] [W] / [300; 350] [V] Thrust = [36; 60] [mN] Isp = [1575; 1850] [s]

Lifetime	Lifetime Demo	Lifetime Demo
Specification	Anode Subassy.	Cathode Subassy.
1 [MNs] 62 [MC] 7 000 cycles	~512 kNs / 1660 hrs → 77% of OP need	28.4 MC & 2500 hrs → 69% of OP need 7000 cycles → 100% of OP need

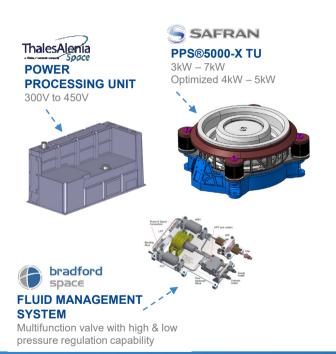

PPS®X00 performance beyond SoA



CHEOPS Low Power Thruster Unit achievements (Kr)

[650; 1000] [W] / [300; 350] [V] Thrust = [26; 49] [mN] Isp = [1500; 1825] [s]

Lifetime Specification	Lifetime Demo Anode Subassy.	Lifetime Demo Cathode Subassy.		
0.70 (MNs) 56 (MC) 7000 cycles	100 kNs / 555 hrs → 21% of OP need	11.4 MC & 1000 hrs → 30% of OP need		
incl. 1,5 qualification coefficient	100% of OP end 2023	100% of OP <u>end 2023</u>		


Next steps:

1/3500hrs-3500cycles campaign to start (mechanical tests successfully achieved)
2/5000 hrs-7000cycles on QM targeted in 2024

CHEOPS Medium Power EPS Overview

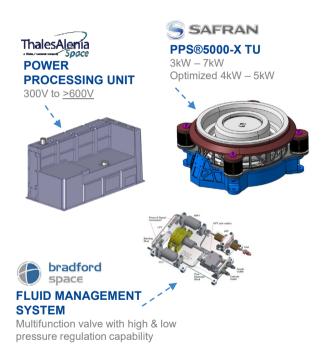
Rapid access to space and ROI

Compact

Versatile products for a large market

Architectures studies and trade-off are based on "Value Creation Strategy" activities

System reliability
GTO/GEO Transfer duration
System Mass & Complexity: integration constraints, development
need and time to market
System Cost estimation
Propellant need and cost


Xe-Kr compatibility

More efficient – More reliable – More flexible – Higher lifetime capabilities

CHEOPS Medium Power EPS KPI (2030 target) - Xe

HIGH THRUST MODE (EOR)

HIGH ISP MODE (SK)

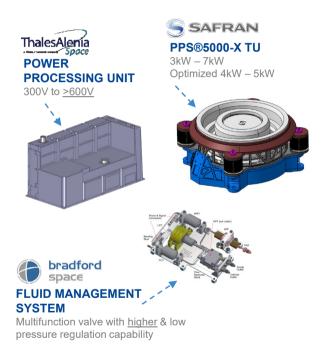
Up to 7kW < 8 kW at System level

3 kW to 7kW

~0.51 N (Xe)
P/T target:
14 W/mN (TU)
16 W/mN (System)

0.13 to 0,31 N (Xe)

P/T target:
19 W/mN (TU)
23 W/mN (System)


 \geq 1,700s (Xe)

~ 2,700s (Xe)

Up to 30 MN.s

CHEOPS Medium Power EPS KPI (2030 target) - Kr

HIGH THRUST MODE (EOR)

HIGH ISP MODE (SK)

Up to 7kW < 8 kW at System level

3 kW to 7kW

~0.41 N (Kr)
P/T target:
14 W/mN (TU)
16 W/mN (System)

0.1 to 0,25 N (Kr)
P/T target:
19 W/mN (TU)
23 W/mN (System)

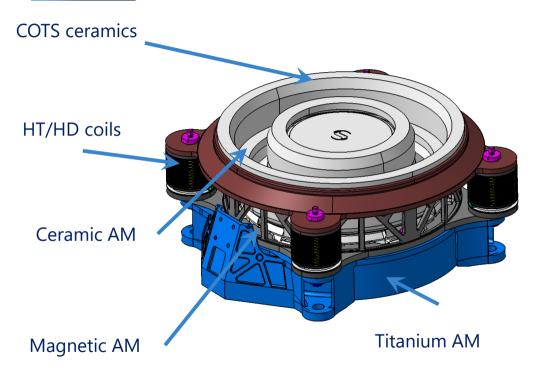
≥ 1,720s (Kr)

Up to 3,000s (Kr)

More than 20 MN.s

CHEOPS Medium Power EPS – achievements and next steps

Coupling tests carried out enabled to validate


- Pressure loop model
- Discharge current loop with optimized pressure loop
- Ignitor circuit with correct start-up of cathode
- Oscillations behavior (No parasitic) in the discharge electric line including the PPU, FMS and thruster unit, when operated under nominal conditions
- Behaviour of the system as a whole, at the different tested operating points

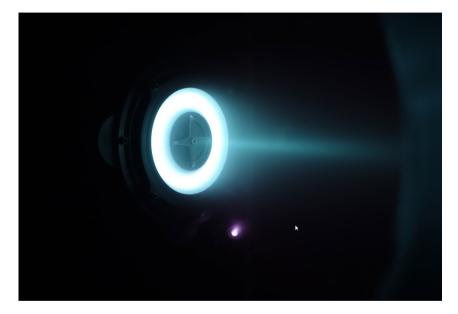
March 2023: PDR close out successful

Q2 2024 : Coupling test

CHEOPS Medium Power Thruster Unit « Flight » design

COTS emitter Simplified architecture

Low cost architecture


- Parts & Processes rationalization
- Innovative technologies

Functional design adapted to future needs

- Low erosion
- High Thrust / High Isp
- Stability over the operating range

CHEOPS Medium Power Thruster Unit technical achievements

EM Model Test Results

- Between 2,5 kW and 7 kW
- Between 300 and 700 V @3kW.

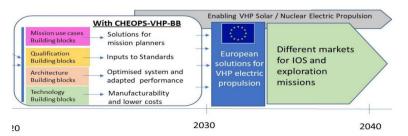
Performance

- Dual Mode Operating points achieved
- Very stable behavior on all the tested domain
- Very promising results for the next Development Model
- Next step: 1000hrs test S1 2024

CHEOPS VHP BB – Key issues

- Objective: Maturing Building Blocks for 20kW- class thrusters for long-term applications
- Major challenges
 - Manufacturability of large scale parts
 - Long firing time for qualification
 - Cost / Schedule !!
 - Qualification sequence
 - Spacecraft platform configuration & Mission profile ??
 - Power / Voltage range ??
 - Propellant

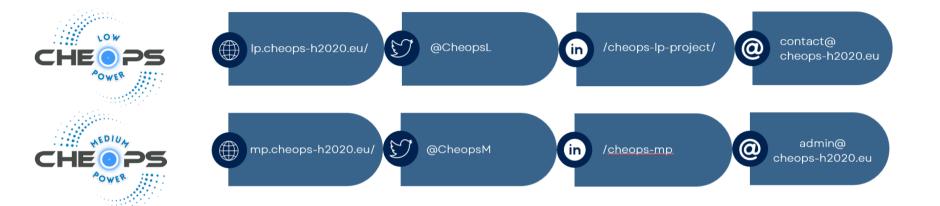
→ Extremely long tests would be required but would not be envisageable / reasonable


Novel approach combining physics-based models with demonstration tests is necessary

CHEOPS VHP BB – Project Overview

- Objective is to complement ongoing thruster-focused development activities with research and development on the future actual use of VHP Hall thruster systems by:
 - Defining overall system architecture against various mission use cases
 - Proposing robust and cost-effective approach to qualification
 - Assessing manufacturability of key components subject to wear,
 typically the discharge chamber and cathode
 - Envisaging alternative propellants and power sources

- → Catalogue of missions
- → 20kW-based EPS specification
- → Qualification methodology foundations (for future ECSS standard)
- → Failure mechanism models
- → AM techniques for large parts
- → 50-100A cathode up to TRL6
- → Design rules
- → Operation feasibility demonstration up to TRL5



Perspectives

- Identification of critical technologies / parts / processes
 - Development of innovative technologies
 - Industrial tool and Supply chain to be consolidated to meet high production rates
 - Materials under stress: Coating, LaB6, Dilver, Copper, Titanium, Electronic components, Valves
 - Tanks (e.g for applications requiring high quantities of Ar)
- Europe In Orbit Demonstration programme is the best way to cope with New Space market searching for quick performance demonstration
 - LP EPS ready for IOD in 2024
 - MP EPS ready for IOD targeted < 2030
- Progress in modelling / facilities capabilities / diagnostics
 - European know-how is unique, rare and valuable
 - Essential activities in development projects
 - Need to develop novel approaches and innovative methodologies for future developments

CHEOPS Social networks

Web: cheops-vhp-bb.eu
Linkedin (/cheops-vhp-bb) and Twitter @cheopsvhpbb

+ Roll ups and goodies!!

POWERED BY TRUST

