

The computational virtual lab of electric propulsion at CNR-ISTP, Bari

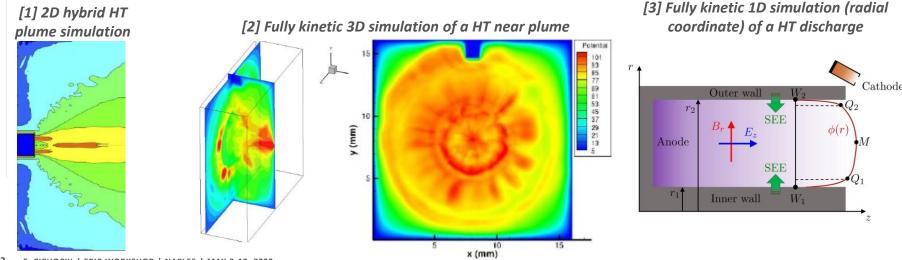
Filippo Cichocki Francesco Taccogna, Pierpaolo Minelli

INSTITUTE FOR PLASMA SCIENCE AND TECHNOLOGY

ISTP-CNR Bari

EPIC Workshop, Naples, May 9-12, 2023

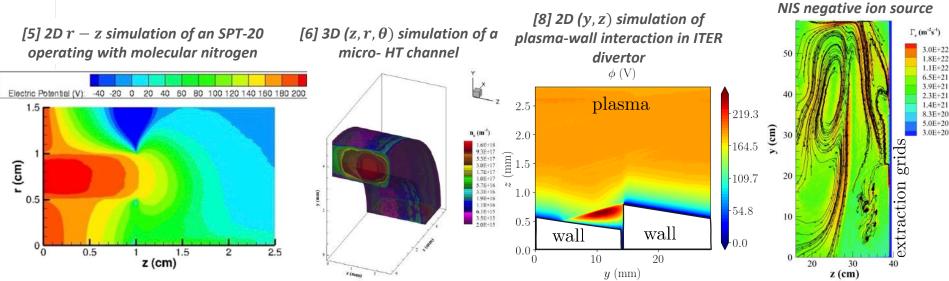
Contents



- Overview of past and present simulation activities at ISTP
- A new collisional database for PIC codes
- Development of a multi-purpose simulator: PICCOLO
- Penning discharge benchmark
- Application to a 2D Hall thruster discharge
- Conclusions and future work

Overview of past and present simulation activities at ISTP (I)

- In the last 2 decades, ISTP has gained significant experience in PIC codes for different applications:
 - 1. 2D and 3D hybrid PIC/fluid codes for plasma thruster plume expansions
 - 2. Fully 3D (with geometrical scaling) near Hall thruster (HT) plume simulations
 - 3. Fully 1D (θ or r) simulations of a HT discharge

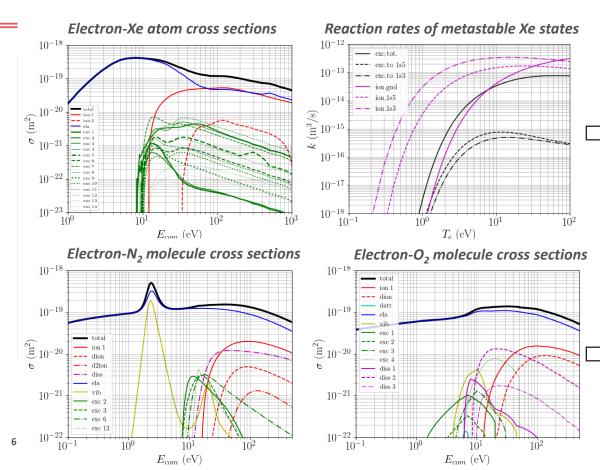

Overview of past and present simulation activities at ISTP (II)

- 4. Fully kinetic 2D ($r \theta$ and θz) PIC simulations of a HT channel
- 5. Fully kinetic 2D (r z) PIC simulations of a HT channel and near plume

[4] 2D $(r - \theta)$ simulation of a Hi

[7] 3D (x, y, z) simulation of

- 6. Fully kinetic 3D (z, r, θ) PIC simulations of a HT channel
- 7. Fully kinetic 3D (ϵ_0 scaling) PIC simulations of negative ion sources
- 8. Fully kinetic 2D planar simulations of plasma-divertor interaction in a fusion reactor

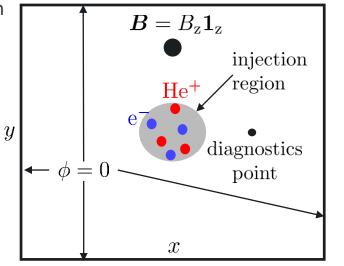

A new collisional database for PIC codes (I)

- The large variety of developed codes urges to use a unique collisional processes database for PIC codes, including:
 - Cross sections for ionization, excitation of **ground** and **metastable states**, elastic collisions, charge exchange collisions, recombination collisions
 - For molecules: cross sections for dissociation, dissociative attachment and ionization, vibration and rotation
- The complex chemistry required for molecules will be dealt with two main approaches:
 - 1. Inclusion of certain metastable excitation and vibrational levels as **new PIC species** with their corresponding cross sections \rightarrow no added complexity at PIC code level
 - 2. Inclusion of excitation and vibrational levels as **additional state vector components** of a single heavy neutral PIC species
- Inclusion of gas species relevant for electric propulsion and fusion: hydrogen, deuterium, helium, molecular oxygen and nitrogen, atomic oxygen, xenon, etc...

A new collisional database for PIC codes (II)

 Ongoing collaboration with EP2 research group (UC3M) to assess the effects of metastable Xe states on plasma thruster discharge properties

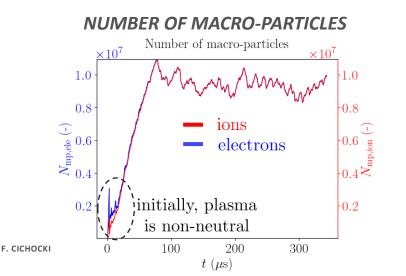
 Studies on air-breathing Hall thruster concepts using alternative propellants:
[5] F. Taccogna et al (2022), Front. Phys. 10:1006994.



- Flexible massively parallelized particle-in-cell code
 - MPI / Open MP parallelization with domain decomposition
 - High performance parallelization techniques (particle resorting, vectorization, optimized field gathering, etc...)
 - Cartesian or Cylindrical geometry
 - Possibility to tackle **quasi-1D** or **quasi-2D** simulation scenarios, through appropriate periodic boundary conditions for fields and particles along the zero-gradient directions
 - Use of the HDF5 collisional database
 - Complex chemistry collisions (MCC and DSMC sampling algorithms)
 - **Complex secondary electron emission** models, differentiating true secondaries and backscattered electrons
 - Tested over more than 1000 cores with good scalability

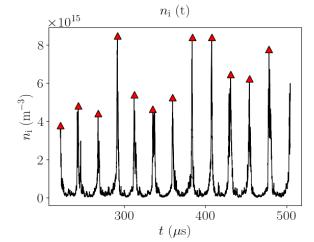
Benchmarking the code: Penning spoke discharge (I)

- International benchmark within program LANDMARK (Low temperAture magNetizeD plasMA benchmaRKs): <u>https://jpb911.wixsite.com/landmark/test-cases</u>
- 2D simulation box (x y) with z-directed magnetic induction field
- Injection of different ion/electron currents from a "cylindrical region" at the box center
 - Magnetic induction field confines particles within one Larmor radius (much smaller than the simulation box) away from injection region, until a rotating spoke instability is triggered
 - In this quasi-2D simulation, 2 cells along z are considered → plasma uniformity along z must be enforced to minimize non-2D effects related to polarization drifts mq/B² dE/dt

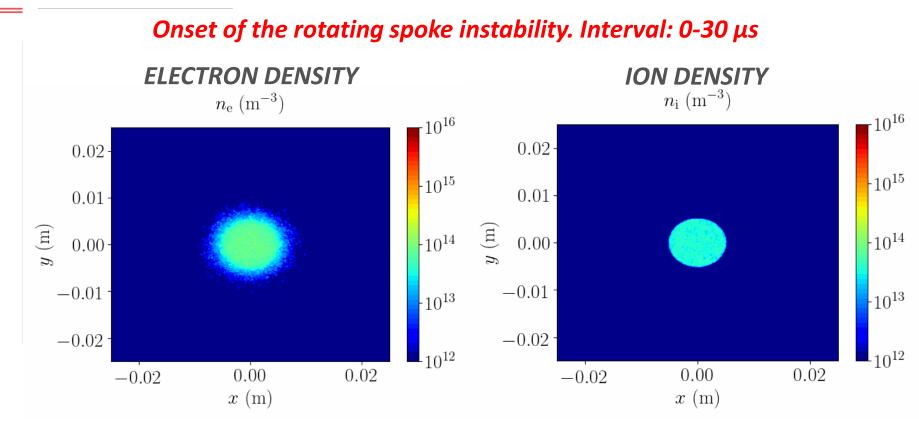


SIMULATION DOMAIN

Benchmarking the code: Penning discharge (II)

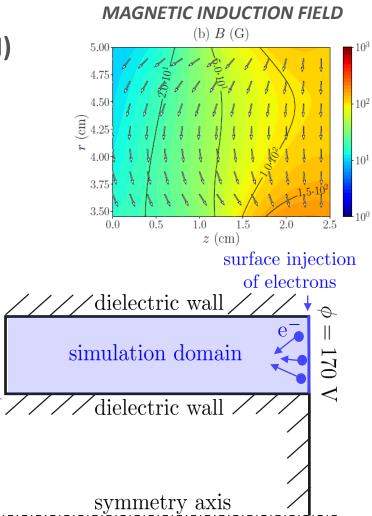


- Collisionless plasma: particles can move radially outward only through drifts
 - 1. After an initial phase of accumulation of macro-particles, azimuthal non-uniformities and strong electric fields appear
 - 2. Radial drifts due to $E_{\theta}B_z$ transport particles away from injection region
 - 3. After approx. 100 μ s, a steady state is reached, featuring a rotating spoke


9

TIME EVOLUTION OF ION DENSITY AT THE DIAGNOSTIC POINT, DURING STEADY STATE

Benchmarking the code: Penning discharge (III)

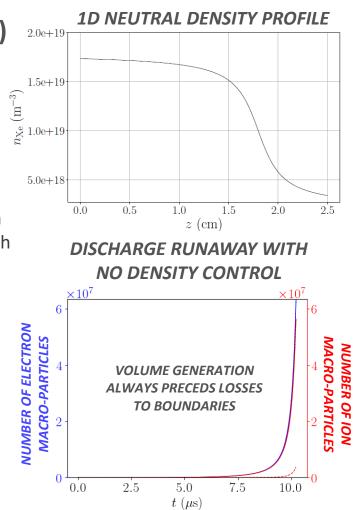


Application to a 2D Hall thruster discharge (I)

- Goal: quick investigation of neutral density control in a simplified 2D scenario
- SPT100-like internal channel simulation
 - Dirichlet conditions at anode/exit plane (300/170 V)
 - Dielectric conditions on lateral walls (Neumann)
 - MCC collisions of ions/electrons with neutral atoms
 - Additional anomalous collisions for electrons, based on Bohm's model
 - Injection of electrons from exit plane:
 - Semi-Maxwellian flux distribution at 10 eV

$$f_{\text{inj}}(\boldsymbol{v}_e, r) \propto \left[\left| \boldsymbol{v}_{e,z} \right| \exp \left(-\frac{m_e v_e^2}{2T_{e0}} \right) \right] r^2$$

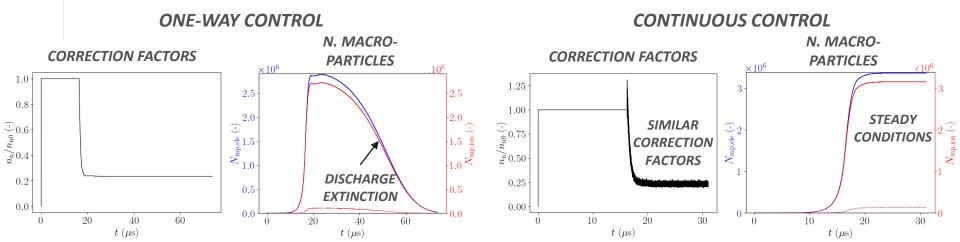
 Background neutrals with z-varying density (controlled actively)



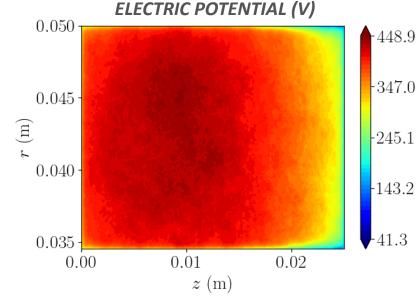
300

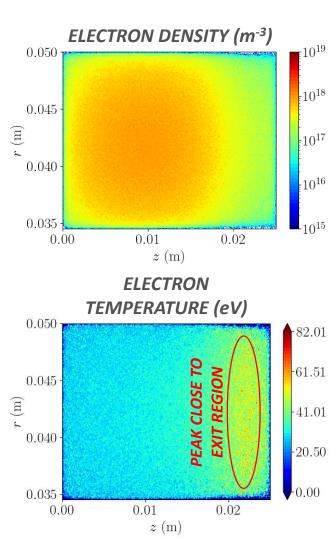
Application to a 2D Hall thruster discharge (II)

- How to account for neutrals in full-PIC simulations?
 - Simulation of neutral macro-particles within the same PIC loop → Enormous number of steps: at least 100-200 µs (50-100 million steps, feasible only in 2D)
 - 2. Simulation of neutrals as a fluid, subject to conservation equations \rightarrow same as above regarding PIC (although with no neutral macro-particles to move)
 - 3. Simulation of neutrals as a fixed background in time
 - Volume generation is a run-away process as neutrals are not consumed by ionization
 - Feedback from total ionized mass flow is needed
 - 4. Simulation of neutrals with a **separate TPMC loop** coupled with PIC loop for charged particles


12 F. CICHOCKI | EPIC WORKSHOP | NAPLES | MAY 9-12, 2023

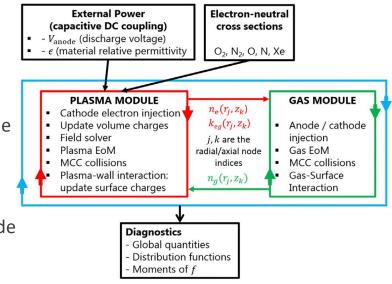
Application to a 2D Hall thruster discharge (III)




- Targeted ionized mass rate: m^(TG)_{ion}
- Two control strategies:
 - **One-way control**: neutral density corrected with a factor $\dot{m}_{ion}^{(TG)}/\dot{m}_{ion}(t^*)$ only at time instants t^* in which the target value is overcome
 - **Continuous control**: once reached for the first time, targeted ionization rate is maintained by continuously correcting neutral density at all times by a factor $\dot{m}_{ion}^{(TG)}/\dot{m}_{ion}(t)$

Application to a 2D Hall thruster discharge (IV)

- Preliminary results (instantaneous, no time averaging)
- Simulation inputs (e.g. injected electron current) to be adjusted yet



Conclusions and future work

- The new PICCOLO code has completed the initial development and benchmarking phase
 - Multi-purpose, multi-dimensional, massively parallelized MPI code
- ISTP collisional database for PIC simulation keeps growing, including more and more complex chemistry and propellants
- PICCOLO benchmarks (ongoing):
 - Rotating spoke benchmark
 - HET 2D channel scenario
- Coming next:
 - Implementation of complex chemistry in collisional module (handling of vibration, rotation, and metastable excitation states within a given PIC species)
 - Implementation in PICCOLO of coupled TPMC/PIC architecture to simulate self-consistently the neutrals
 - Reproduction of a 3D HT discharge with a quasi-2D code tailoring anomalous transport model

COUPLED PIC/TPMC LOOPS (FROM REF. [5])

REFERENCES

- [1] F. Taccogna, S. Longo, M. Capitelli, *Particle-in-cell with Monte Carlo simulation of SPT-100 exhaust*, Journal of spacecraft and rockets 39 (3), 409-419
- [2] N. Oudini, F. Taccogna, P. Minelli, 3D fully kinetic simulation of near-field plume region, 33rd International Electric Propulsion Conference, IEPC2013-419
- [3] A. Domínguez-Vázquez, F. Taccogna, E. Ahedo, Particle modeling of radial electron dynamics in a controlled discharge of a Hall thruster, Plasma Sources Science and Technology 27 (6), 064006
- [4] F. Taccogna, R. Schneider, S. Longo, M. Capitelli, *Fully kinetic 2D (r, theta) model of a Hall discharge*, 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 5211
- [5] F. Taccogna, F. Cichocki and P. Minelli (2022), Coupling plasma physics and chemistry in the PIC model of electric propulsion: Application to an air breathing, low-power Hall thruster. Front. Phys. 10:1006994
- [6] F. Taccogna, P. Minelli, *Three-dimensional particle-in-cell model of Hall thruster: the discharge channel*, Physics of Plasmas 25 (6), 061208
- [7] F. Taccogna, P. Minelli, *PIC modeling of negative ion sources for fusion*, New Journal of Physics 19 (1), 015012

Thank you very much for your attention

Any questions?