EP2PLUS: Thruster-plumefacility coupled simulations

J. Zhou, A. Modesti, M. Merino, M. Guaita, E. Ahedo

Equipo de Propulsión Espacial y Plasmas (EP2) Universidad Carlos III de Madrid (UC3M)

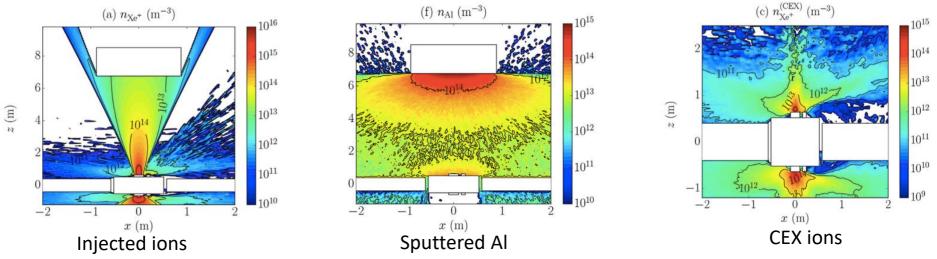
> EPIC Workshop 2023 Naples, Italy, May 9-12, 2023

Follow us on: GitHub: ep2lab Twitter: @ep2lab

EP2PLUS

- > 3D hybrid simulator for plasma plumes & interaction with nearby objects
- Originally developed under FP7-LEOSWEEP for Active Debris Removal
- Upgrades: ion thruster plume neutralization, geomagnetic effects
- Ongoing upgrade: simulate Hall thruster plume inside vacuum chamber
 - □ To be applied in CHEOPS-LP, CHEOPS-MP, ASPIRE
- > Parallel study (ECOMODIS): Characterization of electron kinetic effects

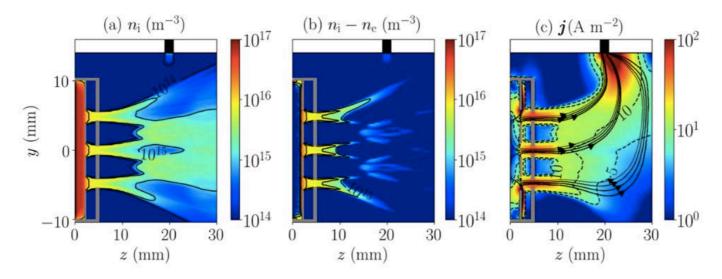
EP2PLUS - LEOSWEEP

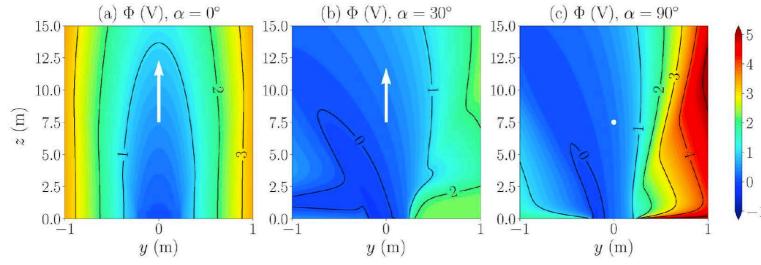

- Active debris removal with impingement of (unmagnetized) plasma beams
- Differences with HYPHEN
 - □ 3D <u>single</u> Cartesian-type <u>mesh</u> for 1-10m domains
 - Magnetic meshes unaffordable in such domains
 - Numerical diffusion at high Hall?
 - □ Electron fluid model with empirical <u>polytropic closure</u>

$$0 = -\nabla p_e + e n_e \nabla \phi + \mathbf{j}_e \times \mathbf{B} + \mathbf{F}_{res}, \quad p_e \propto n_e^{\gamma}$$

Debris

S/C

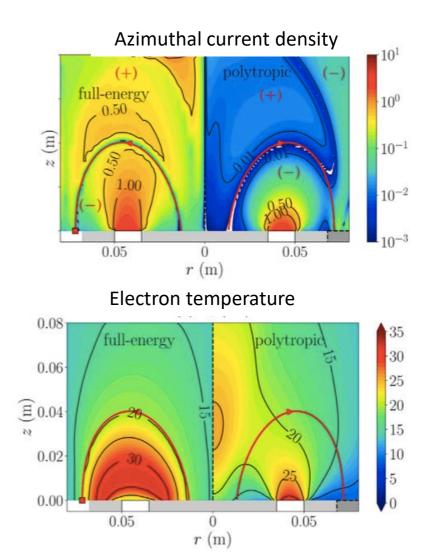

- Poisson solver for non neutral regions
- Fluid model solved with (non-conservative) <u>finite differences</u>



EP2PLUS - APPLICATIONS

→ GIT optics and beam neutralization, Perales-Díaz et al. PSST 30, 105023 (2021)

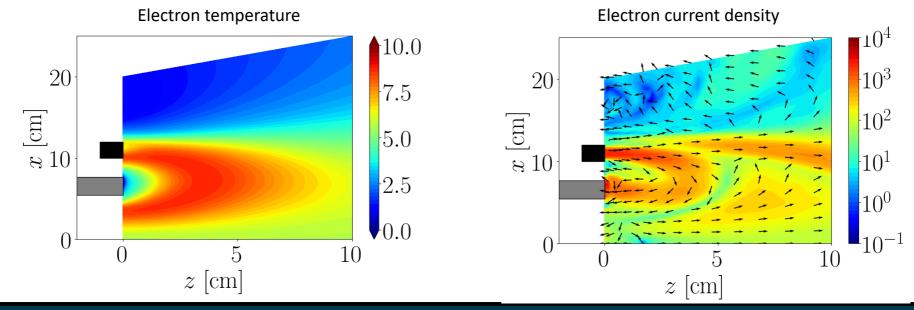
> Plume deflected by geomagnetic effects, *Cichocki et al. Acta Astron. 175, 190 (2020)*



EP2PLUS-HET PLUME

HET near-plume

- □ is highly magnetized
- acceleration non completed
- collisional processes are still relevant
- > Cichocki et al. Acta Astron. 187, 498 (2021)
 - EP2PLUS reproduces well current
 θ –symmetrization from lateral cathode
 - **\Box** Fails to solve well T_e and ϕ maps
 - Requires very fine mesh for convergence
- EP2PLUS upgrading for HET plumes
 - To include electron energy equation
 - sources/sinks, heat flux
 - **D** To deal with higher Hall
 - 1) use of (conservative) finite volume scheme
 - 2) further parallelization, better solvers
 - To implement rest of HYPHEN capabilities



EP2PLUS upgrading

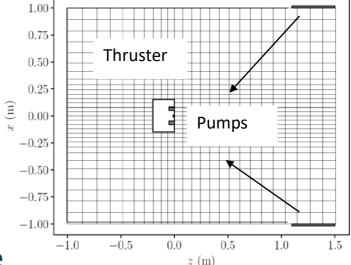
- Implementation of conservative finite volume methods
 - □ Better global conservation of plasma properties.
 - Better convergence for magnetized scenarios
 - maximum Hall parameter still limited
 - Coarser meshes can be used
 - reduction of computational time
- Better compilers and solvers.
 - □ g fortran/PARDISO \rightarrow intel fortran/MKL PARDISO \rightarrow 5-8 improvement in computation
- Implementation of the energy balance

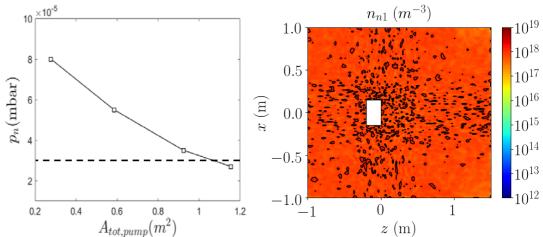
Thruster-plume-facility coupled simulations with EP2PLUS

J. Zhou, A. Modesti, M. Merino, M. Guaita, E. Ahedo

$I_{\rm z}^+$ (A) in FD scheme				
	41x41x101	81x81x201	121x121x301	
$\chi_{\rm max} = 35$	0.453	0.544	0.583	

$I_{\rm z}^+$ (A) in FV scheme				
	41x41x101	81x81x201	121x121x301	
$\chi_{\rm max} = 35$	0.664	0.671	0.676	

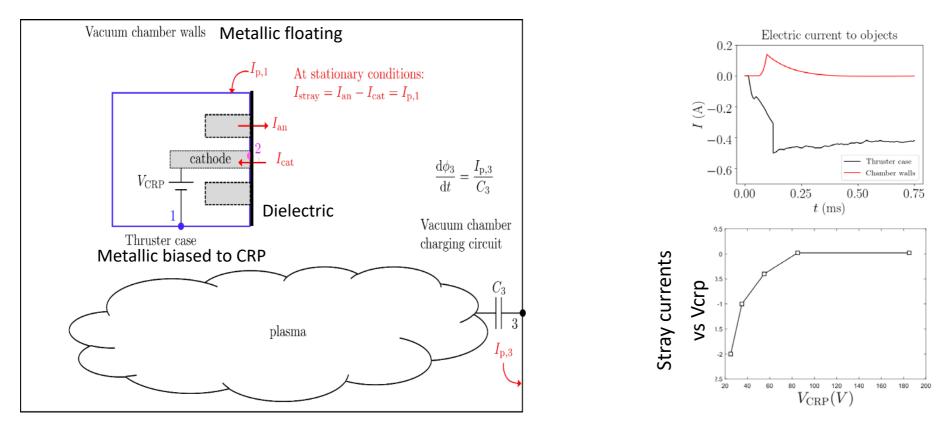

Thruster-Vacuum Chamber simulations

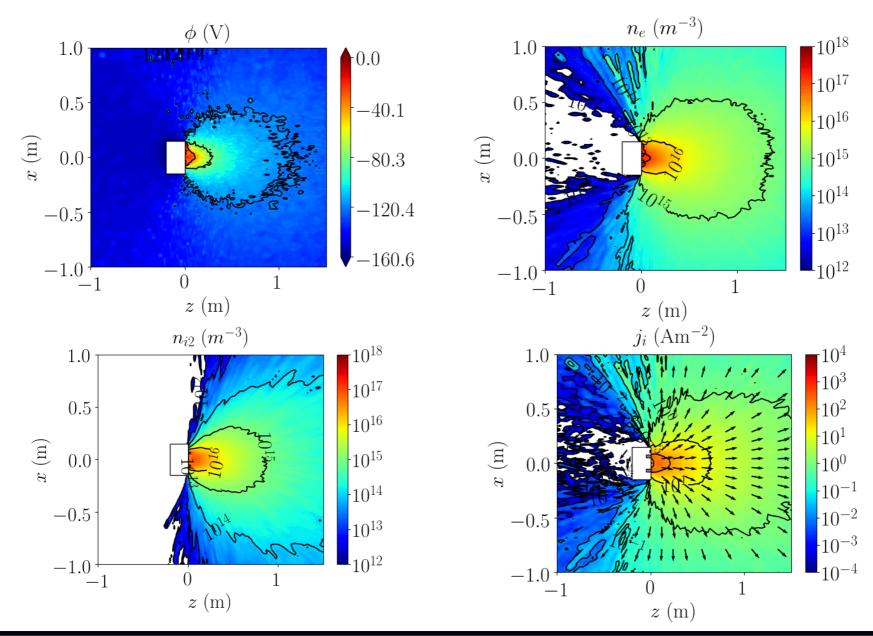

➤ Goals:

- Interpret results from testing campaigns of ASPIRE, CHEOPS-LP, CHEOPS-MP
- Analysis of background pressure effects
- Analysis of electrical connections among different surfaces and plasma
- Prediction of thruster operation in free-space

Simulations. 1st step

- □ Thruster emits just neutrals
- Pumps are free loss surfaces.
- Background pressure is proportional to pump area
- Second step.
 - □ Thruster firing: Plasma emission



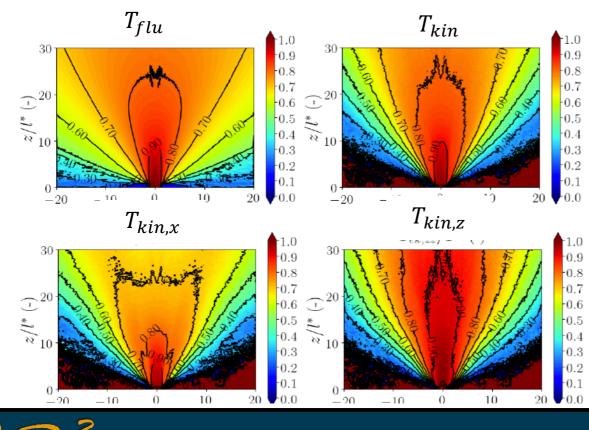

Thruster-VC simulations

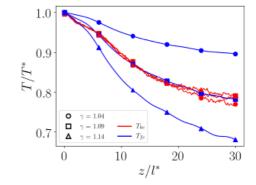
- Walls constitute additional electric paths for plasma
- Electric coupling (thruster + cathode + plume + chamber +...) can have large impact in
 - plume properties. electric currents to different elements
- Very relevant for analyses of experimental results
- > Effect in performances is probably limited, but it can have some impact

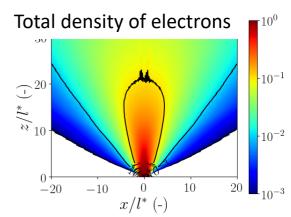
Thruster-VC simulations

Thruster-plume-facility coupled simulations with EP2PLUS J. Zhou, A. Modesti, M. Merino, M. Guaita, E. Ahedo

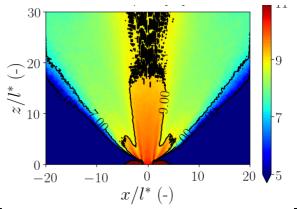
9


Kinetically-optimized EP2PLUS


- > Developed under ECOMODIS for ESA (UC3M, JLU-Giessen, AirbusDS, ArianeG)
- Goals:
 - □ Consistent macroscopic description of electrons in <u>2D-3D rarified</u> plumes
 - □ Experimental verification from testing GIT and ECR plumes
 - □ Theoretical verification with 1D kinetic codes (AKILES,...)
- Our (first) approach:
 - □ Use EP2PLUS-1 (PIC ions, fluid electrons, polytropic closure, quasineutrality)
 - □ We add a partial population of PIC electrons
 - **D** PIC electrons 'inform' of macroscopic properties (e.g. γ) to electron fluid
 - □ These properties can be adapted in fluid model
- > Advantages
 - □ Large saving in length ($\gg \lambda_D$) and time scales ($\gg \omega_{pe}^{-1}$)
 - * Much less expensive than full PIC codes \rightarrow 1-2 orders saving in computation
 - Direct verification of macroscopic properties



Kinetically-optimized EP2PLUS


- Example: unmagnetized, collisionless, 2D plume
- > There is an optimal polytropic coef. γ fitting $T_{kin}(z, 0)$
- > Still, fluid physics are complex:
 - Iateral cooling is higher than axial one
 - □ the cooling is locally anisotropic: $\nabla \cdot \overline{p}_e \neq \nabla p_e$
 - collisions isotropize partially)

Relative density of kinetic electrons

Thank you! Questions?

This research has received funding from H2020 projects ASPIRE (101004366), CHEOPS-LP (101004331) and CHEOPS-MP (101004226), and ESA Project ECOMODIS

email: ep2@uc3m.es web: ep2.uc3m.es Follow us on: GitHub: ep2lab Twitter: @ep2lab

