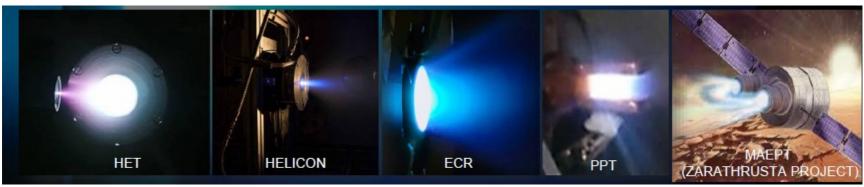
Experimental activities at the Plasma and Space Propulsion Team (EP2-UC3M)

J. Navarro-Cavallé, M.R. Inchingolo, T. Perrotin, S. Barquero, P. Fajardo, <u>M. Merino</u>, E. Ahedo

EPIC Workshop 2023 Naples, 9-12 May 2023



Follow us on: GitHub: ep2lab Twitter: @ep2lab

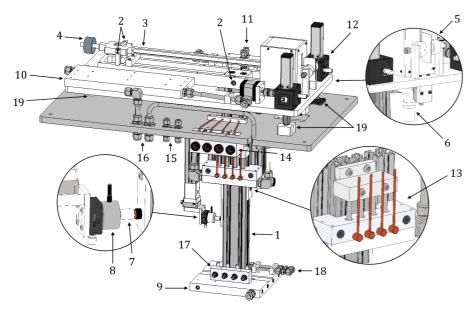
Contents

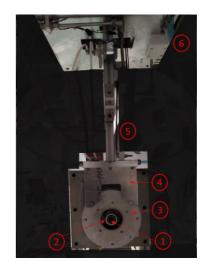
- 1. Facilities
- 2. In-house diagnostics for EP characterization/validation
- 3. Protoype development
 - □ HPT, presented in GRANT DISR 7 HIPATIA
 - □ ECRT
 - o HT
 - PPT

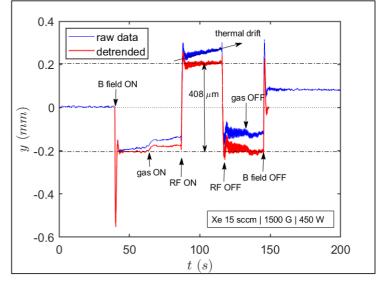
Facilities

> Main chamber:

- □ Steel 304 vessel, 1.5 m diameter, 3.5 m long
- Vacuum technology
 - Mechanical roughing pump (Leyvac LV80)
 - ✤ 2 turbomolecuar (MAGW2).
 - ✤ 3 interchangeable cryopanels, Leyvac 140 T-V
- **u** Ultimate dry pressure 10^{-7} mbar.
- Pumping speed:
 33,000 l/s of Xe at 2 · 10⁻⁵ mbar
 (cont. operation 5 days x 20 sccm Xe).
- Small Vac chamber
 - □ Volume: (0.125 m³)
 - **Dry scroll pump:** 3.2 L/s (11.4 m^3/h)
 - □ Turbomolecular pump: 400 L/s
 - □ Ultimate dry vacuum: 10-6 mbar
- > Others:
 - □ 1,5 m x 1 m chamber (1,5 m³)
 - □ Small plasma reactor.

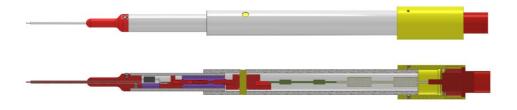





DIAGNOSTICS

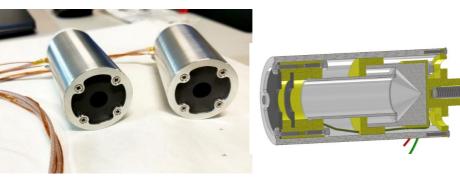
Thrust balance

- □ 0-100 mN
- □ 0.1 mN resolution
- □ Thruster mass, up to 50 kg
- Cooled, adjustable damping,
 Remote calibration (voice coil and
 Calibrated weights)
- Optical sensor for the displacement

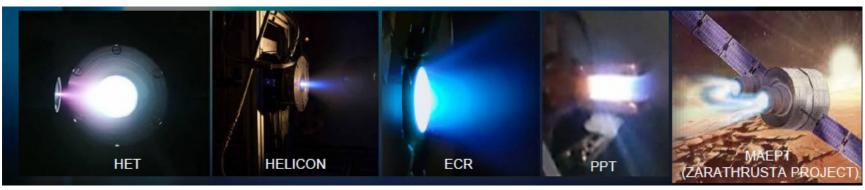


EXAMPLE: Thrust measurements in HPT, *M. Wijnen, PhD Thesis* 2023, DIAGNOSTIC METHODS FOR THE CHARACTERIZATION OF A HELICON PLASMA THRUSTER.

DIAGNOSTICS

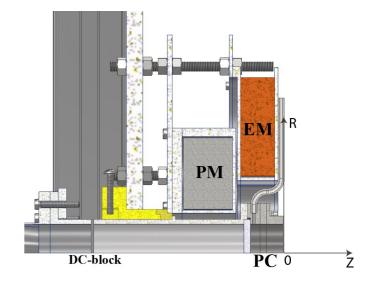

- RF compensated LP and Faraday Cups/Probes
 - □ Latest advances in the frame of the *Diagnosis Toolkit for Plasma thrusters* project.
 - **RFCLP** with plug-&-play interchangeable electrodes for highly rarefied plasmas.
 - □ High resolution in the 2D maps of plasma properties.
 - Modular Faraday Cups.
 - **Robotic Arm system:** polar coordinates 0-400 mm and -90, +90 deg.

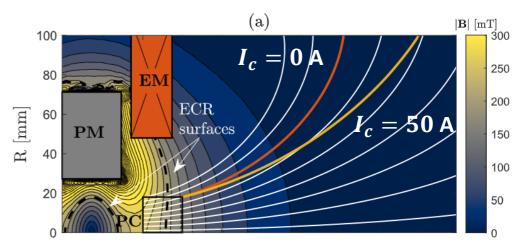
eesa



Contents

- 1. Facilities
- 2. In-house diagnostics for EP characterization/validation
- 3. Protoype development
 - □ HPT, presented in GRANT DISR 7 HIPATIA
 - □ ECRT
 - o HT
 - PPT
 - □ MAEPT, presented in Zarathrusta poster

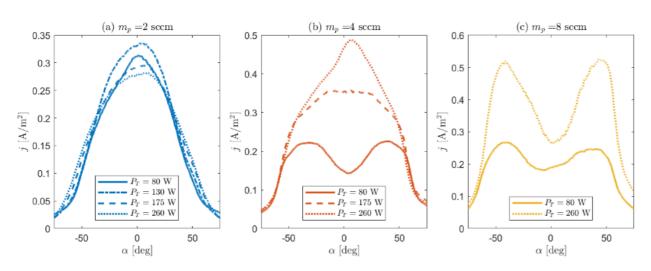




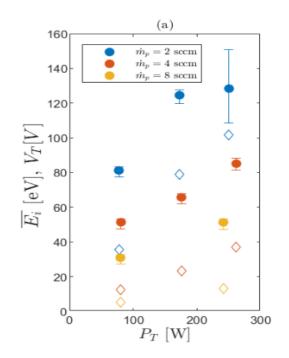
WAVEGUIDE ECRT DESIGN

- Modular approach for easy design iterations.
- 5.8GHz microwaves for smaller plasma chamber and lower power and mass flow rate requirements.
- Stainless steel plasma chamber (PC) separated from the waveguide.
- Magnetic field generator: permanent magnet (PM) + electromagnet (EM) for resonance position tuning and nozzle divergence control.
- Thruster left floating by using a waveguide "vacuum-gap" DC-Block.
- > Radial propellant injection.

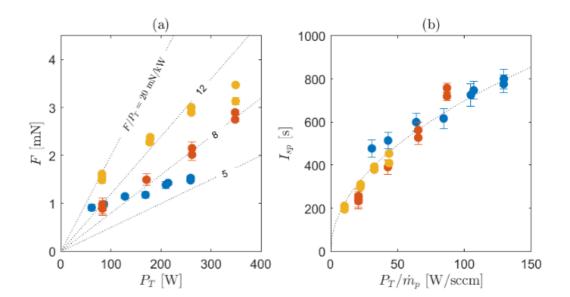
Plasma Chamber Dimensions:	18mm, 20mm
Radius, Length	
Microwave Power	50-300 W
Mass flow rate (Xe)	1-40sccm
MW frequency	5.8 GHz
B resonance	2070 G
Magnet type	Sm-Co YXG-32
Max electromagnet power	500 W
Electromagnet max B field	900G

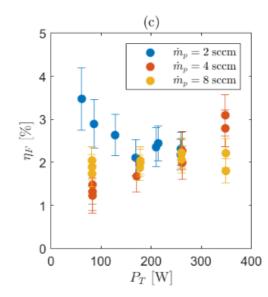



[1] M. R. Inchingolo, M. Merino, J. Navarro-Cavallé; Plume characterization of a waveguide ECR thruster. Journal of Applied Physics 21 March 2023; 133 (11): 113304.


ECRT PLUME MEASUREMENTS

- Ion energies measured with a Retarding Potential Analyser (RPA). Energies up to 200 eV were found with an average energy up to 130 eV.
- Plume shape and ion energies are strongly affected by the free parameters: input power, mass flow rate and coil current.
- A hollow plume arises for low values of mass flow rate to input power ratio, the plume divergence is strongly affected.
- The plume divergence is reduced when the coil is turned on (less divergent magnetic field).
- High energy electrons were found in the plume with energies up to 300 eV. [2]

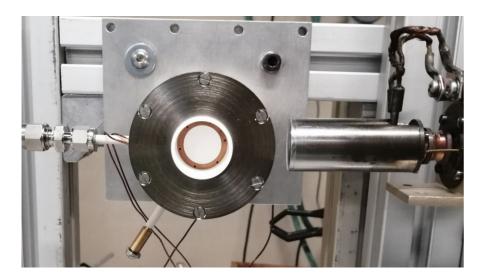


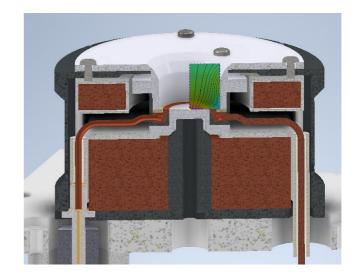

ECRT PERFORMANCE – TB MEASUREMENTS

- Propulsive performance characterized on the EP2 amplified displacement pendulum thrust balance.
- Three mass flow rates studied for different power levels
- Thrust ranging 1 3.5 mN
- Isp between 200 800 s
- Efficiencies found between 1 3.5 %

FUTURE REASEARCH

- Investigate the role of power coupling on the plume shape and address how the hollow plume is formed.
- Role of high energy electrons on the plume expansion and ion acceleration.
- Multiple charged ions are thought to be present in the plume, ExB measurements are planned to quantify their amount.





Cylindrical Hall thruster development

- 200 W prototype: tested and characterized
 - □ Fully cylindrical BN channel
 - Injection through anode
 - ✤ 6 injectors
 - 2 electromagnets, pure ion circuit
 - Direct magnetic topology
 - Hollow cathode

- > 100 W prototype: in procurement
 - Downscaled and improved from 200
 W
 - □ Fully cylindrical BN channel
 - Injection through anode
 - Continuous slot or porous injector
 - □ 2 electromagnets with pure ion circuit
 - Magnetic shielding
 - Alternative neutralizers

200 W CHT Experimental results

240

220

160 140

100

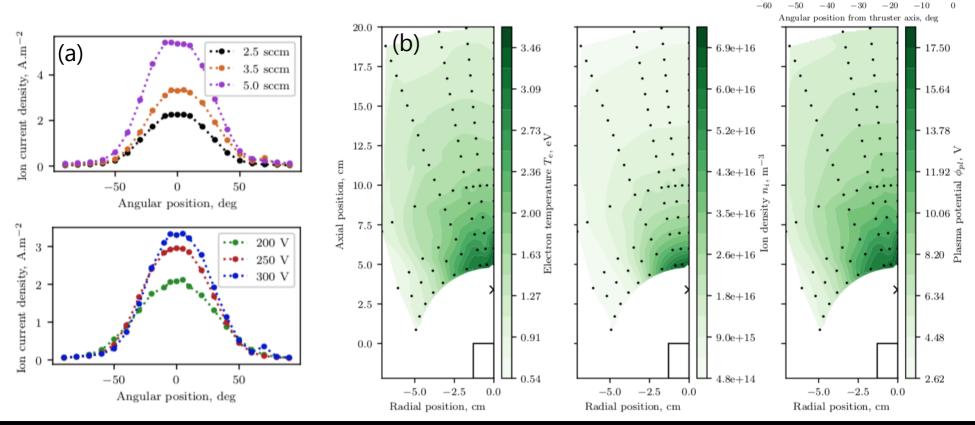
vev. 500 eV

та 180

probable

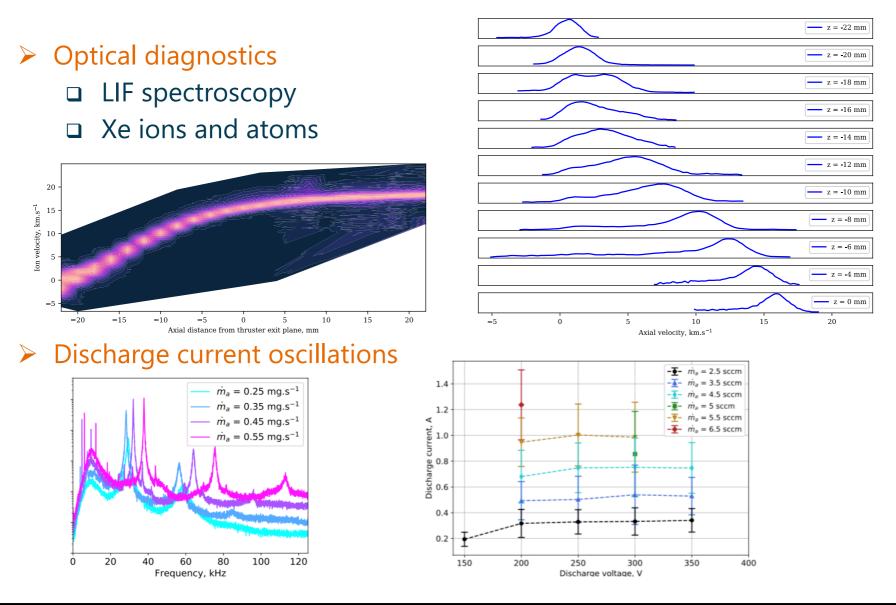
<u>5</u> 120

(C)

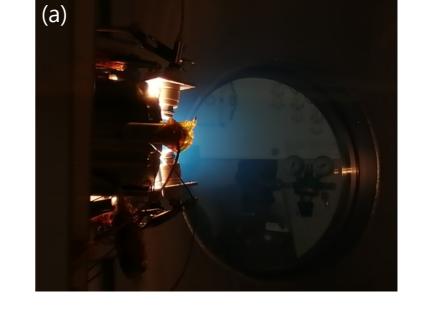

0

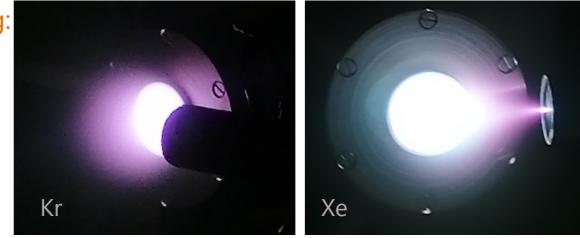
٥

٥


0

- Ignition tests: in colaboration with
- > Operating envelope
 - □ 30-300 W, 150-350 V, 2.5-6.5 sccm Xe
- Electrostatic diagnostics
 - □ Faraday cup (a), Langmuir probe (b), RPA (c)


200 W CHT Experimental results

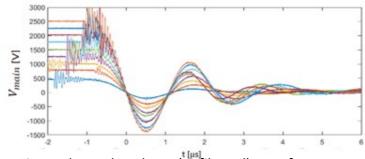
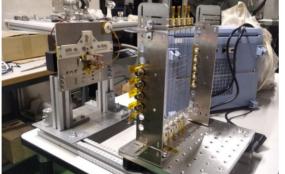
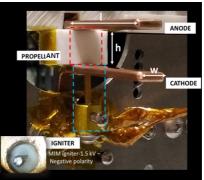


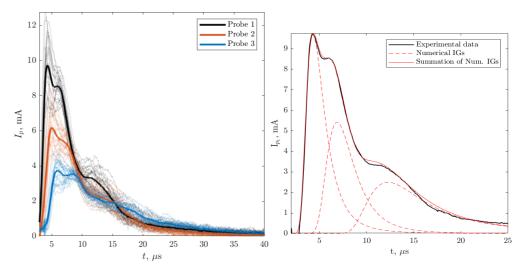
Future research on CHT

- Characterization of 100 W CHT
 - Discharge and plume properties
- Cathode study
 - Alternative cathodes tests with 100 W CHT
 - ✤ Hollow cathode, dry (a), power-free
 - Hollow cathode coupling with 200 W CHT
 - Cathode-related plasma oscillations
- Direct thrust measurements
- Alternative propellants testing:
 - 🗆 Kr
 - □ Xe, others

PPT development

- For CubeSat applications, Impulse bit: 10-100 uNs
- Analysis of spark-plug / channel electrical discharge for different Vo, C.



Fig. 1. Electrode voltage (unfiltered) waveform as a function of the initial voltage. [1]

- Time-of-flight measurements
 - Identification of different ion group velocities
- > Next steps:
 - Characterization of the plasma beam crosssection

Ion saturation current: unfiltered vs mean current with Gaussian fitting.

Thank you!

email: ep2@uc3m.es web: ep2.uc3m.es

Design and Plume Characterization of a Low-Power Circular Waveguide Coupled ECR Thruster M. Inchingolo, J. Navarro, M. Merino

Follow us on:

GitHub: ep2lab

Twitter: @ep2lab