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breathing

Building a space Revolution: Electric Air-
Technology for High-atmosphere Exploration

Tommaso Andreussi
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Very-low Earth orbits

The new space economy is determining a significant increase in
the number of satellites deployed in Low Earth Orbits (LEOs),

enabling transformative applications but also raising concerns
about space debris

Lowering the spacecraft altitude below 450 km, in Very-low Earth




Air-breathing Electric Rocket (AER)
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State of the art

AERs combine an electric thruster with an air intake, thus bonding propulsion, platform, and environment.

Several researchers?! investigated the concept feasibility, which relies on the minimization of platform drag
and the optimization of available power, as well as on the AER performance.
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A single constraint

AER performance relies on: Orbital motion
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A single constraint
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State of the art

* The AER efficiency requirement becomes more ..« SO el S _
] ] — .o [ — Analyzed by Monte Carlo simulation ; Analyzed by experiment y
relaxed as the altitude increases. : |

system Incident molecules

* However, effective propellant ionization requires e R I —
a density much higher than that available at — =4
fea Si b | e a |tit u d es . — g x BISm:T;l urbomolecular pump

T=300K

e The concept feasibility critically relies on an
effective air compression (passive or active) in the

lonization chamber £=10.95 p]mt . T Turbo area T
Moulti-hole plate Upstream area Downstream area

int a ke . Institution Design Reflection Ducts Collection Compr.
* Passive compression relies on the different axA Passive Maxwell Yes 0.25-045 100-50
. . Busek Pas\Act. Diffuse No 0.36-0.60 -
conductance of slender ducts for aligned or diffuse (.- ., pacie i Voo 05059 hoos
flows. However, higher compression factors Maxwell No 023-025 138-92
implies lower collection efficiencies. H° Aetive Diffuse fes 042058
IRS Passive Diffuse Yes 0.31-045
Honeycomb of Specular No 0.59-0.94
s/maller tubes TsAGI RIAME Passive Diffuse Yes 0.33-0.34 > 100
Il::somlng - ¥ e Thrtuster U. Colorado Passive Diffuse No 0.31-0.35
gdenslty & i w — </ enirance Specular No >09
. :\ f -~ Skolkovo Inst. Active Diffuse Yes Up to 0.98 > 4000
ng x 20 ng x 100 ng xf 250 NUDT Passive Spe.\Max. Both 0.65-0.81 210-100

2023 EPIC Workshop — May 9-12, 2023



State of the art

* The VLEO flow conditions are challenging to
recreate on ground. St

* Intake performance are typically assessed through
numerical simulations (TPMC and DSMC).

* Thruster operation with atmospheric propellant is
often characterized in stand-alone condition.
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* Modelling of propellant collection, thruster nstitution ype cloclty  ‘otes
H . . H Busek RF heater 3-4 km/s Free jet, large AO fract,, high diver-
discharge, and intake + thruster coupling requires o ?
experi mental validation. Arcjet 3-4 km/s Free jet with stripping, large AO fract,
high divergence
Hall thruster 7.7 km/s Large ion fract,, small AO fract,, veloc-
ity spread, Xe cathode
RF Hall thr. Large ion fract,, Ar added, Xe cathode
To TOF JAXA Laser detonation 5.8-84 km/s Pulsed O, or N, operation, large AO
fract.
=t RF source + surf. neut. ~8km/s Small fract. of accel. particles
SITAEL Hall thruster 9.1 km/s Large ion fract,, small AO fract, veloc-
ity spread, Xe cathode
Hall thruster 6-15 km/s Large ion fract,, small AO fract, veloc-
ity spread, ceN2 cathode
Mirror TU Dresden RF source + surf. neut. - Small fract. of accel. particles
ABIE Uni. of Manchester Ele. stim. desorption ~ ~8 km/s Low fluxes, large AO fract.

2023 EPIC Workshop — May 9-12, 2023



State of the art

Three end-to-end test campaigns have been performed, highlighting criticalities in the
VLEO flow representativeness, diagnostics, and concept performance

JAXA SITAEL
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AER open issues
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BREATHE project

..
........

Funded by the European Research Council with a Consolidator Grant,
BREATHE is a 5-year research project aimed at

increasing the understanding of air-breathing electric propulsion to pave
the way toward the in-orbit demonstration of the AER concept.

INSTITUTE
OF MECHANICAL
INTELLIGENCE
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BREATHE Virtual Lab

A multi-physics modelling suite for AER-based systems, missions, and operations. '.";;-..-:.',-g:e;

Module Function

Electric Potential [V] lon Density [m-3]
%1073 x107

Use input from 3D Monte Carlo to solve for particle continuity and electron
0D-Hybrid AER |energy in the defined AER control volumes (usually, an ionization stage + an

Model acceleration stage), define a thrust law outputting AER performance vs inlet
flow properties and operating condition.

3D Ion and Propgggte neutral and. ion particlgs trajectories to derive r'elf:vant distributi*ons
Newtral Monte descrlblpg heavy p.artlc.les dynamics. May bet used to optimize magnetic field
Carlo topologles promoting  ion confinement, or intake geometry enhancing flow| .
collection and compression.

Neutral and plasma flows

Solve for static electric and magnetic fields on which the ion particles are
2D/3D EM Solver|pushed in the 3D Monte Carlo. It also allows to estimate the RF power
transferred to electrons in case an RF generator 1s used.

D Plume A simplified plume expansion model, allowing to define plasma properties o -
Ex ansion inside vacuum chamber during on-ground testing or to assess plume interaction N 005
P with spacecraft for on-orbit scenarios investigations. °

Orbit Propagator | Includes an orbital propagator to assess the on-orbit behavior of the thruster
and Mission  |design according to the thrust law derived from the 0D AER module and the

Analysis discharge control law designed in the Discharge Control module.
Analyze discharge power and thrust frequency response to variable applied|
Discharge electrode voltage or electromagnet current, allowing to design and assess| £ z
Control optimum discharge control strategies to safely operate the AER system despite g g

the highly variable inlet flow properties.

System and mission

Includes a lumped thermal model of the propulsion system, together with a
Thermal Model R . .
material lifetime model coupled with temperature map and plasma densities
from the 0D AER module. W, s a4 s e 7

Time [days] Time [days]

and Materials
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Miniaturization and scaling laws

10 1,,,{: ‘2()()(){5 - 1 = J yIs
 The BREATHE project will identify the core scaling laws
of AER candidate technologies, s D e
* Focusing on the miniaturization and optimization of the :
system at CubeSat-scale: o4 :
* Rapid and cost-effective In-orbit experiment of the o :
technology. g
= |
 Reduce cost and improve accessibility of VLEO S |
assets. 102} i
 Smaller platforms provide intrinsic system-level :
advantages in the trade-off between air-breathing |
and traditional propulsion systems. :
102 | | L [ | |
100 150 200 250 300 350 400 450
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