

EPIC2 Workshop Keynote on future EP system & THAG Roadmap

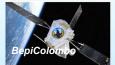
Davina Di Cara & THAG EPIC Workshop 2023 Naples, Italy davina.maria.di.cara@esa.int

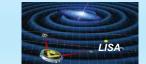
*

ESA UNCLASSIFIED – For ESA Official Use Only

→ THE EUROPEAN SPACE AGENCY

Electric Propulsion: completed & on-going ESA missions




Completed/Ongoing Science & Exploration missions with EP for interplanetary transfers

Ongoing Science & Exploration missions with EP for interplanetary and precise positioning

Cubesat missions with EP

- EP has today reached its maturation phase and is increasingly being used for different application.
- Growing inclusion of EP on GEO • communication satellites
- EP standards on LEO mega-• constellations of small satellites
- Use of EP emerging on satellites for ٠ Navigation, Earth Observation, satellites in LEO/VLEO and on science and robotic exploration missions

Completed Earth Observation missions with EP for drag free

Under development missions with EP for orbit maintenance, drag free..

Under development **Navigation satellites** with EP

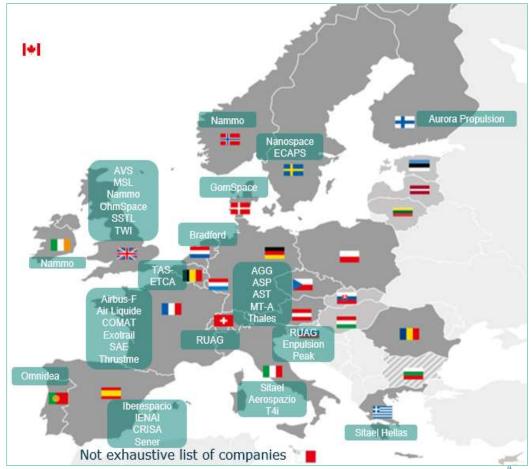
G2G

Under definition Space Transportation missions with EP

M-ARGO GOMX-5 VMMO

→ THE EUROPEAN SPACE AGENCY

ESA Technology Harmonisation: THAG


Interested?

- seek involvement through Euroconsult (<u>harmo@euroconsult-</u> <u>ec.com</u>), which has been selected by ESA to support consultation for Harmonisation.
- You may also contact your national delegate (contact names can be found in the ESTMP: send an e-mail to <u>ESTMP@esa.int</u>).
- All European space sector stakeholders can request access to the Harmonisation Document Management System (HDMS/DCCM: <u>https://tecpolaris.esa.int/eclipse</u>) by sending an e-mail to <u>harmo@esa.int</u> providing business affiliation and position in the company.

State of Art of Electric Propulsion in Europe

- EP technologies developments supported by ESA,
 EC and National Agencies over the last five decades
- Extensive heritage achieved through various missions success
- Large capability exist in ESA Member States covering Conventional and NewSpace
- Good diversification and maturity readiness
- Established suppliers are well positioned in worldwide landscape
- Advent of LEO mega-constellations demands new EP systems, offering opportunities for new entries (SME, start-up)

💳 💶 📕 🚍 💳 🕂 🛯 🗮 🚍 🔄 🖉 🖉 🚝 🚝 🚍 🚛 🔯 🛌 📲 🧮 🔤 🐜 🖬 👫 📲 🛨 🔤 🔤 🔤 🖕 🔶

State of Art of European EP Technologies

Established Suppliers: <u>Safran (FR)</u> with over 200 PPS®5000 5kW-class HET thrusters ordered, over 70 delivered and 17 in orbit and <u>Enpulsion/FOTEC (AT)</u> with 167 FEEP systems in orbit are leader suppliers followed by AGG (DE) with RIT2X, Thales GmbH (DE) with HEMPTs, Sitael (IT) with various HETs.

Several new entries (SME, start-ups): Exotrail (FR), ThrustME (FR), T4i (IT), URA (UK), COMAT (FR), MSL (UK), Airbus DS (DE), SENER (ES), Ienai (ES), Ion-X (FR), etc.

Several research centres, academia!

EP PPUs:

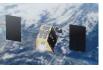
- Established Suppliers with extensive heritage: Thales Alenia Space (BE) with over 140 PPUs for 1.5-5kW HETs ordered by 8 different customers and over 110 PPU delivered/in-orbit and <u>Airbus DS – CRISA (FR,</u> <u>ES, DE)</u> with over 600 PPUs for 300W HETs in-orbit, over 140 PPUs for 3-5kW HETs ordered and 82 delivered (40 units per year production rate) and 8 PPUs for 5kW GIEs delivered.
- Both working on next gen. PPUs for low-middle power HETs, GIEs and HEMPTs and to respond to market needs (low cost, high efficiency) with cutting edge technologies.
- **Several new entries:** Sitael (IT/GR), Safran (FR), ASP (DE), Beyond Gravity (AT) /Enpulsion (AT), Exotrail (FR), Ienai (ES), Ion-X (FR), etc.

EP Pointing Mechanisms:

- The data examination shows that today European EPPMs have a definite performance advantage in the global competition.
- Established suppliers: BGA (AT), ADS (FR), EHP (BE), TAS (UK), MDA (CA)
- Several new entries: SENER (ES), AVS (UK), Exotrail (FR).

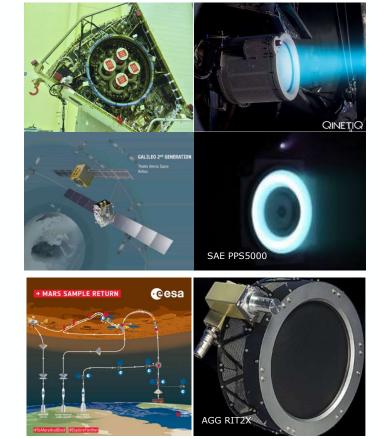
💳 📰 📰 💳 🖛 🕂 📲 🔚 🔚 🔚 📰 📲 🚍 🛶 🚳 🛌 📲 🖬 🖬 🖬 📾 🍁 🖬 👘 🛶 👘

Electric Propulsion: recent achievements


- Some EP thrusters have completed their ground qualification (including life test demonstration) and have become commercially available:
 - Safran 5kW-class HET PPS®5000: ground qualification with 20,000 hours demonstrated, 17 thrusters in orbit
 - Enpulsion/FOTEC IFM Nano/AR3/Micro FEEP: ground gualification with 30,0000 hours demonstrated on emitter, 167 systems in orbit
 - Thales GmbH HEMPT-3050: ground qualification with 9,000 hours demonstrated, thrusters ready for launch in June 2023 on H2Sat
- Some EP thrusters have started their ground qualification, e.g. AGG RIT2X, Sitael HT100, Sitael HT5k;
- Several new companies (SME, start-ups) have started developing EP technologies and performed IODs;
- All European Primes are offering "all-electric" GEO telecommunication platforms with the 5 kW PPS5000 HET from SAE (FR), e.g. Spacebus NEO from Thales Alenia Space (FR), Eurostar NEO from Airbus DS (FR), Electra from OHB (D);
- Spacebus NEO and Eurostar NEO all-electric platforms have achieved flight heritage;
- Airbus DS (FR) and Thales Alenia Space (FR) have started the development of their new line of medium-size, reconfigurable platforms, named respectively OneSat and Space Inspire;
- The use of EP is the standard for LEO large/mega-constellations and thousands of low power (<1kW) hall thrusters are in operation on Starlink and on OneWeb small comsats.
- Thales Alenia Space has announced to have been selected by the operator Telesat to build constellation of small satellites using European EP thrusters named Lightspeed.

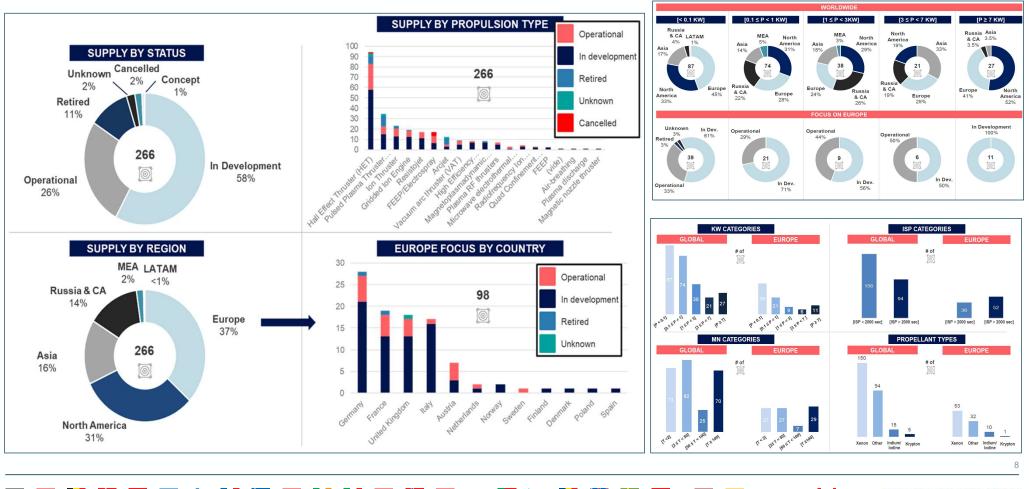
OneWeb

→ THE EUROPEAN SPACE AGENCY


Enpulsion FEE

SAE PPS5000

Electric Propulsion: recent achievements

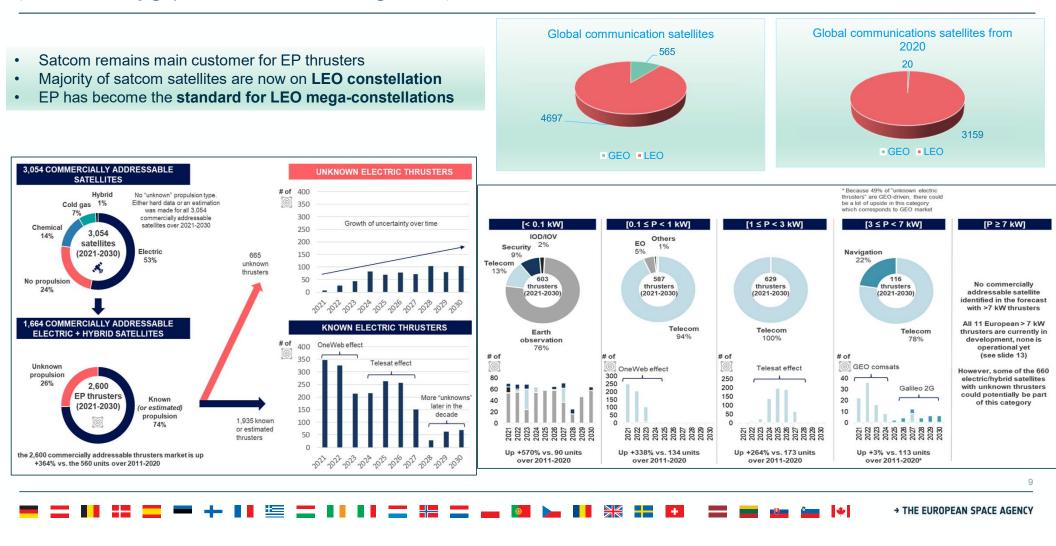

- ESA has launched **BepiColombo** mission which it is still on its way to Mercury propelled by the 5kW T6 Gridded Ion Engines from QinetiQ (UK);
- The Galileo 2nd Generation program has started the procurement phase of the first 12 satellites: six from Thales Alenia Space (IT) and six from Airbus Friedrichshafen (D). Both satellite manufacturers have chosen the 5kW PPS-5000 Hall Thruster from SAE (FR) for orbit raising to MEO in 180 days
- The Mars Samples Return ERO mission has entered in its procurement phase choosing the RIT2X Gridded Ion Engines from ArianeGroup (D) to propel this satellite to and back from Mars;
- NASA DART mission with the 7kW NEXT-C GIEs;
- NASA 50kW EP system for the Lunar Gateway;
- The European Commission has invested to date over 60M€ on developing Electric Propulsion technologies, within the Horizon 2020 / HE EPIC

💳 📰 🔜 💳 🛶 💵 🔚 🔚 🔚 📰 📲 🔤 📷 🔕 🛌 📲 🗮 🔤 📾 🚱 🖕 🖬

Competitiveness and Benchmarking – EP Thrusters

(credit: Euroconsult for THAG)

📕 🚍 💵 🚼 🚍 🖛 🔶 🛛 🖉 🧮 🚍 🛛 🖉 🔚 🚍 📲 🚍 💑 🕼 🌬 📲 👫 🚼 🛃 📾 🕍 🔹 👘 🔶


→ THE EUROPEAN SPACE AGENCY

cesa

Market Analysis - EP Thrusters

(credits: ucsusa.org @ April 22 & Euroconsult for THAG @ Nov 2022)

Electric Propulsion: a wide range of applications & opportunities

(credit: THAG)

GEO medium-large Telecom:

- Legacy/opportunity market
- 5-7kW xenon (HET, GIE) systems with <u>high thrust for EOR & high ISP</u> for SK, disposal + Aux systems
- Modularity, low cost, medium-high production, long lifetime (>15MNs)

LEO small (>150kg) comsats medium/mega-constellations:

- Growing market
- <1kW EP systems, medium thrust for deployment, orbit changes, orbit maintenance, repositioning, <u>collision avoidance and</u> deorbiting,
- Alternative propellants to costly xenon: Kr, Ar, I2, H20, etc
- <u>Low cost, large production</u>, lead time, time-to-market, demisability, COTS in PPU and fluidics,
- Short lifetime (1MNs)

extension, debris monitoring/removal).

- Opportunity/emergency market
- High thrust, moderate-high ISP
- Medium-long lifetime
- Propellants alternative to costly xenon

VLEO:

- Opportunity market
- ABEP systems for drag compensation
- Medium-long lifetime (5 years goal)

Science & Exploration

deesa

- Low power, high precision (FEEP, GIE) systems for drag free and formation flying
- high power/thrust/ISP GIE systems for interplanetary missions,

Earth Observation:

- SK. CAM and deorbiting
- high-precision (GIE, FEEP) systems with long lifetime for drag free of gravity missions

Propellant Storage
 Fluidic Control
 Power Conditioning
 Pointing Mechanism
 Thruster

MEO Navigation (Galileo 2G):

- Emerging market
- 5kW xenon HET systems for EOR + aux. xenon systems
- non-dependence, medium-high production, medium lifetime (7.5MNs)

For the later of t

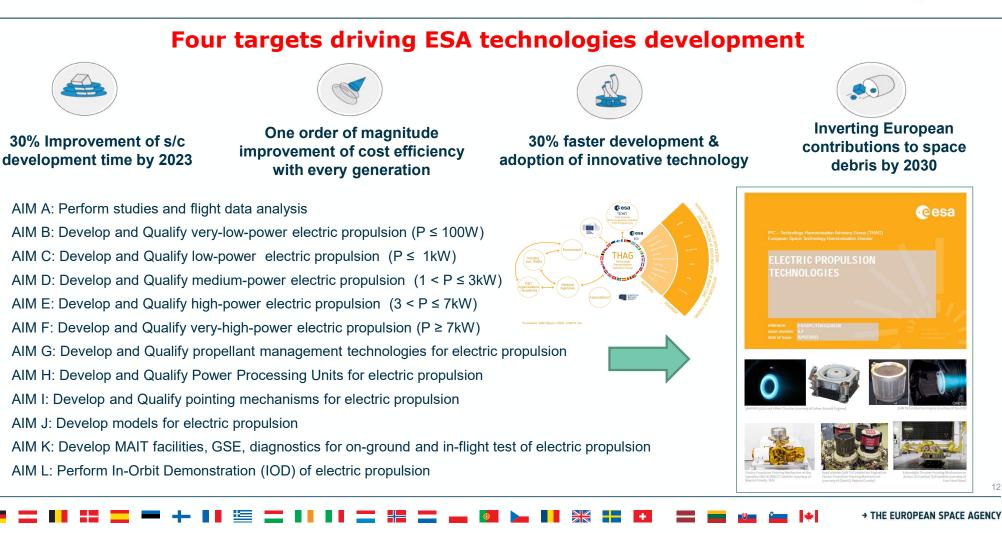
Ear

Electric Propulsion: short term needs (3-5 years)

(credits: THAG)

- To complete ground qualification of:
 - high power (5-7kW) HET/GIE systems for GEO Telecom, Navigation, Space Transportation and Exploration missions;
 - low-power (<1kW) EP systems for LEO constellations of small Comsats and EO satellites.
- To establish/secure leadership and boost commercialisation with competitive price, short lead time, high production volume, high performance and high reliability:
 - Design to cost;
 - · Lean Production;
 - · COTS components in PPU, fluidics and pointing mechanisms;
 - Breakthrough technologies, e.g. planar transformers in PPUs, smart materials in pointing mechanisms, etc.;
 - Advanced manufacturing techniques;
 - · Alternative propellants to costly xenon, e.g. Krypton, Argon, Iodine, Water, others,
 - Sustainable qualification & reduced flight acceptance tests;
 - · Standardisation of test procedures, tools, diagnostics and optimisation/expansion of facilities and GSE for MAIT activities;
 - Automation of test activities and processes control.
- To reduce dependence in supply chain and establish dual source for critical/strategic technologies.
- To accelerate maturation and qualification of ABEP systems for drag compensation of VLEO (160-300km) comsats and EO satellites
- To accelerate maturation and qualification of innovative/game-changing technologies to expand existing / enable new markets.
- To **perform IODs** to complement, not to replace, on-ground qualification and **exploit flight data** for generation of lessons learned and models validation.
- To maintain, secure and expand expertise.

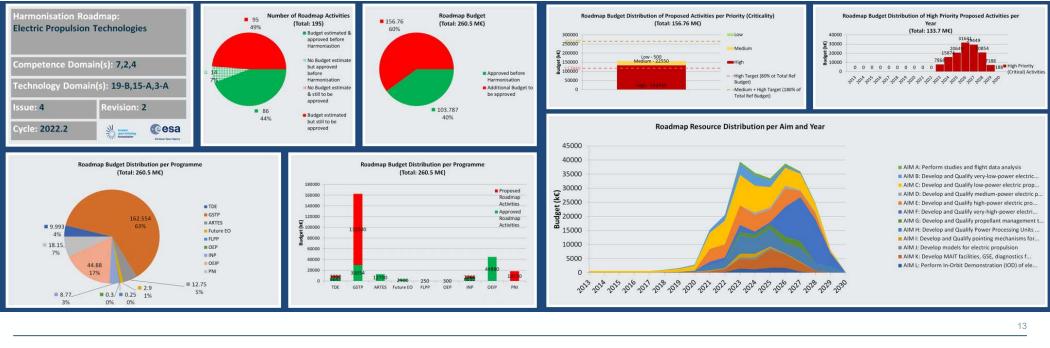
= =	•• == ==	+ 11 🖺 🚍 🚍			🔜 🚥 😬 🛶	→ THE EUROPEAN SPACE AGENCY
-----	----------	------------	--	--	---------	-----------------------------

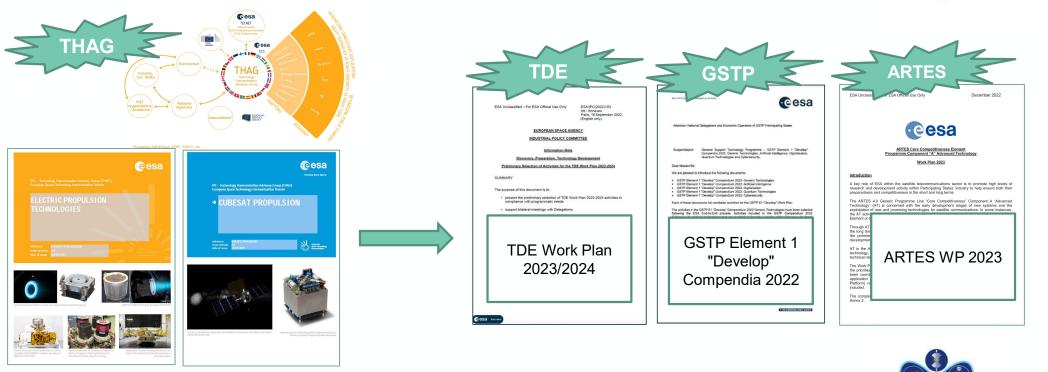

THAG Electric Propulsion Roadmap

н.

.

н.


н.


THAG Electric Propulsion Roadmap

- A total of 124 ESA activities have been approved since 2017 for a budget of 147.3 M€
- The 2022 THAG Roadmap requests a budget of about 156.76 M€ for 95 new activities to be started within the next 5 years
- The requested budget is in addition to the 103.79 M€ of already approved activities
- Out of the total requested budget, 133.71 M€ are requested for 66 activities deemed to have high criticality

Implementation of THAG Electric Propulsion Roadmap: WP 2023-2024

- Short and mid term priorities are in TDE WP 2023-2024, GSTP Compendia, ARTES AT WP 2023.
- Complemented by ESA Projects-led developments, GSTP Element 1 (Develop) & Element 2 (Make) & Element 3 (Fly/IOD Cubesats), ARTES C&G & Pioneer, Incubed, HE/NAV WP 2023
- Complemented by IP-CCI white paper (under elaboration) => WS 28-30 June 2023

💻 📰 📕 🚍 💳 🔶 📲 🔚 📕 🔚 📰 🚟 🚍 🚛 🚳 🛌 📲 🗮 🚍 🗰 🚳 🛌 👘 🛨

14

Propulsion

eesa

Major EP development activities to be implemented via TDE, GSTP, ARTES AT in 2023-2024

TDE WP 2023-2024							
T419-802MP	Low-power, high-thrust electric propulsion system for space transportation						
T719-801MP	Disruptive propulsion technologies for CubeSat de-orbiting						
T719-803MP	High-thrust, moderate-ISP, 6DOF electric propulsion system for CubeSats						
T719-804MP	Demisable tank and fill & drain valve for CubeSat propulsion						
T519-801MP	Isp Optimised EP system for Atmospheric Propellants						
GSTP Element 1 2022							
GT17-650MP	Pressure regulator for electric, chemical and cold gas propulsion systems						
GT17-651MP	High-pressure latching valve for electric propulsion						
GT17-652MP	Miniaturised, high-pressure isolation valve for nanosatellite propulsion						
GT17-653MP	Miniaturised pressure regulator for nanosatellite propulsion						
	ARTES AT WP 2023						
4B.170	Testbed for modular and scalable direct drive electric propulsion solutions						
4B.171	High thrust, high specific impulse Xenon resistojet						
4B.172	Cathode for oxygen-rich environment						
4B.173	Cathodeless electric propulsion thruster						
4B.174	Very low Earth orbit gas generator for air-breathing electric propulsion ground testing						
4B.175	Mass production thruster testing technology						
4B.176	Advanced manufacturing for electric propulsion components of low Earth orbit satcoms						
4B.177	Demisable krypton tank						

= = = = = +		⊨		→ THE EUROPEAN SPACE AGENCY
-------------	--	---	--	-----------------------------

Electric Propulsion Technologies

